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Abstract

We present the results of a friendly competition for formal verification of continuous and hybrid
systems with nonlinear continuous dynamics. The friendly competition took place as part of the
workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2025. This year, 5 tools
participated: Ariadne, CORA, DynIbex, JuliaReach and KeYmaera X (in alphabetic order). These
tools are applied to solve reachability analysis problems on seven benchmark problems, three of them
featuring some aspects of hybrid dynamics. We do not rank the tools based on the results, but show
the current status and discover the potential advantages of different tools.
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1 Introduction

Disclaimer The presented report of the ARCH-COMP friendly competition for contin-
uous and hybrid systems with nonlinear dynamics aims at providing a landscape of the
current capabilities of verification tools. We would like to stress that each tool has unique
strengths—though not all of their features can be highlighted within a single report. To
reach a consensus in what benchmarks are used, some compromises had to be made so that
some tools may benefit more from the presented choice than others. The obtained results
have been verified by an independent repeatability evaluation. To establish further trust-
worthiness of the results, the code with which the results have been obtained is publicly
available as Docker [20] containers at gitlab.com/goranf/ARCH-COMP.

In this report, we summarize the results of the ninth ARCH-COMP [1] friendly competition
on the reachability analysis of continuous and hybrid systems with nonlinear dynamics. Given
a system defined by a nonlinear Ordinary differential equation (ODE) ˙⃗x = f(x⃗, t) along with
an initial condition x⃗ ∈ X0, we apply the participating tools to prove properties of the state
reachable set in a bounded time horizon. The techniques for solving such a problem are usually
very sensitive to not only the nonlinearity of the dynamics but also the size of the initial set.
This is also one of the main reasons why most of the tools require quite a lot of computational
parameters.

In this report, 5 tools, namely Ariadne, CORA, DynIbex, JuliaReach and KeYmaera X,
participated in solving problems defined on five continuous and two hybrid benchmarks. The
continuous benchmarks are the Traffic scenario, the Robertson chemical reaction system, the
Coupled Van der Pol oscillator, the Laub-Loomis model of enzymatic activities and the Tran-
sient Stability analysis of Power Systems. The hybrid benchmarks model a Lotka-Volterra
predator-prey system with a Tangential Crossing, and a Space Rendezvous system.

The benchmarks were selected based on discussions between the tool authors, with a pref-
erence on keeping a significant set of the benchmarks from the previous year. It is apparent
that they come from very different domains and aim at identifying issues specific to nonlinear
dynamics, possibly with the addition of hybrid behavior. In particular, with the Power Systems
benchmark we introduced differential-algebraic dynamics for the first time.

2 Participating Tools

Ariadne. (Luca Geretti, Pieter Collins) Ariadne [28, 19] is a library based on Computable
Analysis [53] that uses a rigorous numerical approach to all its algebraic, geometric and logical
operations. In particular, it performs numerical rounding control of all external and internal
operations, in order to enforce conservative interpretation of input specification and guarantee
formal correctness of the computed output. It focuses on nonlinear systems, both continuous
and hybrid, supporting differential and algebraic relations, with a focus on compositionality
[23, 24]. It has been mainly applied to the verification of robotic tasks [34, 25, 26]. The library
is written in modern C++ with an optional Python interface. The official site for Ariadne is
https://www.ariadne-cps.org.
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CORA. (Matthias Althoff, Maximilian Perschl) The Continuous Reachability Analyzer
(CORA) [8, 9] is a MATLAB-based toolbox designed for the formal verification of cyber-physical
systems through reachability analysis. It offers a comprehensive suite of tools for modeling and
analyzing various system dynamics, including linear, nonlinear, and hybrid systems. CORA
supports both continuous and discrete-time systems, accommodating uncertainties in system
inputs and parameters. These uncertainties are captured by a diverse range of set representa-
tions such as intervals, zonotopes, Taylor models, and polytopes. Additionally, CORA provides
functionalities for the formal verification of neural networks as well as data-driven system iden-
tification with reachset conformance. Various converters are implemented to easily model a
system in CORA such as the well-established SpaceEx format for dynamic systems and ONNX
format for neural networks. CORA ensures the seamless integration of different reachability
algorithms without code modifications and aims for a user-friendly experience through auto-
matic parameter tuning, making it a versatile tool for researchers and engineers in the field of
cyber-physical systems. CORA is available at cora.in.tum.de.

DynIbex. (Julien Alexandre dit Sandretto, Joris Tillet) A library merging interval constraint
satisfaction problem algorithms and guaranteed numerical integration methods based on Runge-
Kutta numerical schemes implemented with affine arithmetic. This library is able to solve or-
dinary differential equations [3] and algebraic differential equations of index 1 [4], combined
with numerical constraints on state variables and reachable tubes. It produces sound re-
sults taking into account round-off errors in floating-point computations and truncation errors
generated by numerical integration methods [43]. Moreover, constraint satisfaction problem
algorithms offer a convenient approach to check properties on reachable tubes as explained
in [5]. This library implements in a very generic way validated numerical integration meth-
ods based on Runge-Kutta methods without many optimizations. Indeed, the computation of
the local truncation error, for each method, depends only on the coefficients of Runge-Kutta
methods and their order. DynIbex is freely available at http://perso.ensta-paristech.fr/
˜chapoutot/dynibex/. Figures have been produced with VIBes library [29] which is available
at http://enstabretagnerobotics.github.io/VIBES/.

JuliaReach. (Luis Benet, Marcelo Forets, Christian Schilling) JuliaReach [21] is an open-
source software suite for reachability computations of dynamical systems, written in the Julia
language and available at http://github.com/JuliaReach. Linear, nonlinear, and hybrid
problems are modeled and solved using the library ReachabilityAnalysis.jl, which can be used
interactively, for example in Jupyter notebooks. Our implementation of the Taylor-model based
solvers (TMJets21a and TMJets21b), which are implemented in TaylorModels.jl [18], incorpo-
rates the packages TaylorSeries.jl [15, 16] and TaylorIntegration.jl [44], and the IntervalArith-
metic.jl [17] package for interval methods. The algorithms applied in this report first compute
a non-validated integration using a Taylor model of order nT . The coefficients of that series are
polynomials of order nQ in the variables that denote small deviations of the initial conditions.
We obtain a time step from the last two coefficients of this time series. In order to validate
the integration step, we compute a second integration using intervals as coefficients of the poly-
nomials in time, and we obtain a bound for the integration using a Lagrange-like remainder.
The remainder is used to check the contraction of a Picard iteration. If the combination of the
time step and the remainder do not satisfy the contraction, we iteratively enlarge the remainder
or possibly shrink the time step. Finally, we evaluate the initial Taylor series with the valid
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remainder at the time step for which the contraction has been proved, which is also evaluated
in the initial set to yield an over-approximation. The approach is (numerically) sound due to
rigorous interval bounds in the Taylor approximation. Discrete transitions for hybrid systems
and Taylor-model approximations are handled using the set library LazySets.jl [30].

KeYmaera X. (Stefan Mitsch, Ismail Patel) KeYmaera X [32] is a theorem prover for the
hybrid systems logic differential dynamic logic (dL). It implements the uniform substitution
calculus of dL [46]. A comparison of the internal reasoning principles in the KeYmaera family
of provers with a discussion of their relative benefits and drawbacks is in [42], and model struc-
turing and proof management on top of uniform substitution is discussed in [39]. KeYmaera X
supports systems with nondeterministic discrete jumps, nonlinear differential equations, nonde-
terministic inputs, and allows defining functions implicitly through their characterizing differ-
ential equations [33]. It provides invariant construction and proving techniques for differential
equations [50, 47], stability verification techniques for switched systems [51], and tactics for cer-
tifying Taylor models, inspired by [35]. Unlike numerical hybrid systems reachability analysis
tools, KeYmaera X also supports unbounded initial sets and unbounded time analysis. Proofs
in KeYmaera X can be conducted interactively [40], steered with tactics [31], or attempted fully
automatic.
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3 Benchmarks

All benchmarks are identified with a four letter code and the last two digits of the year it was
most recently updated. A total of seven benchmarks is available this year: TRAF22, ROBE25,
CVDP23 and LALO20 for continuous systems, and LOVO25, SPRE22 and TSPS25 for hybrid
systems. For each benchmark, the Model subsection defines the dynamics, Analysis specifies
how to run the model, Evaluation defines the metrics used to compare tools, and Results
discusses the actual results, in particular explaining the meaningful settings required for each
tool.

3.1 Traffic scenario benchmark (TRAF22)

The avoidance of collisions in traffic scenarios is of utmost interest in the development of motion
planners for autonomous driving. Recently [37], a workflow for the automated generation of
verification tasks has been proposed based on an extraction of traffic scenario benchmarks from
the CommonRoad framework [10].

3.1.1 Model

The nonlinear continuous-time dynamics are represented by a kinematic single-track model [37,
Eq. (1)]: 

δ̇ = u1 + w1

ψ̇ = v

lwb
tan δ

v̇ = u2 + w2

ṡx = v cosψ
ṡy = v sinψ,

where the state vector x ∈ R5 consists of the steering angle δ, the vehicle heading ψ, the vehicle
velocity v, and the positions sx, sy of the vehicle along the x-axis and y-axis. The control
inputs u1, u2 represent the steering angle and acceleration, respectively. Additionally, model
uncertainties and disturbances affecting the vehicle are modeled by the disturbances w1, w2. In
order to follow a reference trajectory xref ∈ R5, we apply a feedback controller of the form [37,
Eq. (2)]

ufb(x̂) = uref +K(x̂− xref )

with the time-varying reference input uref ∈ R2, the time-varying feedback matrix K ∈ R2×5,
and the measured state x̂ := x + z defined using the measurement error z ∈ R5. Thus, the
ten-dimensional closed-loop system f(x, u, w) is obtained by inserting the control law into the
five-dimensional model: {

ẋ = f(x, uref +K(x+ z − xref ), w)
ẋref = f(xref , uref , 0)

5
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Table 1: Results of TRAF22 in terms of computation time and verification.
tool computation time in [s] Verified?
Ariadne N/A N/A
CORA 150 Yes
DynIbex 357 Yes
JuliaReach 168 Yes
KeYmaera X 27 Yes1

1 Input constraint specification for all possible tracking controllers

3.1.2 Analysis

The set for the measurement error Z ⊂ R5, the input set U ⊂ R2, and the set of disturbances
W ⊂ R2 are respectively bounded by

Z =


[−0.0004, 0.0004]
[−0.0004, 0.0004]
[−0.006, 0.006]
[−0.002, 0.002]
[−0.002, 0.002]

 U =
(

[−0.7, 0.7]
[−11, 11]

)
W =

(
[−0.02, 0.02]
[−0.3, 0.3]

)
.

The initial state is uncertain within the set x0 ⊕Z ×x0. The inputs u1, u2 and the disturbances
w1, w2 can change arbitrarily over time within their respective sets.

In this case, we analyze the scenario with the identifier BEL Putte-4 2 T-1 : The time
horizon is determined by the length of the piecewise-constant control values, i.e., the reference
trajectory xref , reference input uref , and feedback matrix K. All of these are provided by a
.csv-file in a format as detailed in [37, Sec. 5].

The following two specifications have to be satisfied:
• Input constraints: The controller input ufb ∈ R2 should be contained within the input

set U at all times. The set of control inputs is computed according to [37, Eq. (5)].
• Collision avoidance: The car should not collide with static or dynamic obstacles as

well as the road boundaries. Therefore, one requires to compute the car’s occupancy set
according to [37, Eq. (4)]. After rewriting the occupancy set as a .csv-file using the format
in [37, Fig. 4], the collision check is performed fully automatically by calling a provided
Python script as detailed in [37, Sec. 5].

3.1.3 Evaluation

There are two metrics to evaluate the performance of each tool. First, we measure the compu-
tation time only comprising the time spent during the reachable set computation, exempt the
time step in the pre- and post-processing steps. Second, we explicitly tabulate the results of
the verification since a collision could occur at any time and therefore might not be captured
in the figures below.

3.1.4 Results

The results from this benchmark are shown in Table 1. Some of the tools still do not support
the format required by the benchmark.
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(a) DynIbex (b) JuliaReach

Figure 1: Reachable set overapproximations for TRAF22.

Settings for Ariadne. Ariadne is currently able to express disturbances within purely con-
tinuous dynamics, while the piecewise-constant input requires extension to the hybrid space.
We plan on supporting hybrid systems for the next year.

Settings for CORA. We used the conservative linearization approach [12] with a time step
size of ∆t = 0.005, resulting in 20 steps per piecewise-constant input. Despite the relatively
large system dimension, a zonotope order of 20 was sufficient for a successful verification.

Settings for DynIbex. The Runge-Kutta method selected is at order four (called RK4 in
DynIbex). The absolute precision is 10−12. The noise number for affine arithmetic is 200.

Settings for JuliaReach. We use the TMJets21b algorithm with nQ = 1, nT = 5, and
adaptive absolute tolerance 3 · 10−11. JuliaReach does not support time-varying disturbances;
the disturbances are instead modeled as uncertain but constant state variables w(0) ∈ W, ẇ = 0.
The reported time consists of computing the reachable states and checking the input constraints.

Settings for KeYmaera X. KeYmaera X models time-varying control references, distur-
bances, and measurement errors as non-deterministic inputs, and certifies that the tracking
controller stays within the input set. In future editions, we plan to obtain monitoring condi-
tions [41] from the formal model to compute occupancy sets.

3.2 Robertson chemical reaction benchmark (ROBE25)
3.2.1 Model

As proposed by Robertson [48], this chemical reaction system models the kinetics of an auto-
catalytic reaction. 

ẋ = −αx+ βyz

ẏ = αx− βyz − γy2

ż = γy2

7
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where x, y and z are the (positive) concentrations of the species, with the assumption that
x+y+z = 1. Here α is a small constant, while β and γ take on large values. In this benchmark
we fix α = 0.4 and analyze the system under three different pairs of values for β and γ:

1. β = 102, γ = 103

2. β = 103, γ = 105

3. β = 103, γ = 107

The initial condition is always x(0) = 1, y(0) = 0 and z(0) = 0.

3.2.2 Analysis

We are interested in computing the reachable tube until t = 40, to see how the integration
scheme holds under the stiff behavior. This year we introduced an additional verification target:
the width of the sum of the concentrations s = x+ y + z at t = 40s must be lower than 10−5.

3.2.3 Evaluation

For each of the three setups, the following three measures are collected:
1. the execution time for evolution;
2. the number of integration steps taken;
3. the width of x+ y + z at t = 40s (for reference).

The intent is to enforce the width of s to get to just below 10−5 and consequently enable a
comparison on execution times and number of integration steps on a common ground.

Additionally, a figure with s (in the [0.9996, 1.0004] range) w.r.t. time overlaid for the three
setups is shown to assess convergence speed. Graphical results are shown even if the verification
target could not be hit.

3.2.4 Results

All tools were able to get to completion. However, very different results were obtained. In the
case of Ariadne and JuliaReach, the width started small and increased monotonically, while
for DynIbex and CORA the width started decreasing from a given value. It is also interesting
to analyze the number of integration steps taken, which turned out to be sensibly lower for
JuliaReach and CORA. While JuliaReach obtained the best width for the stiffest case, this
came at the expense of a significantly higher computation time. Perhaps for the next year some
verification constraints should be enforced, in order to provide a better baseline for comparison
between the tools.

Settings for Ariadne. A GradedTaylorSeriesIntegrator is used, with a maximum error per
integration step of 10−10. A maximum step size of 0.004 is imposed in all three setups, though
the actual value dynamically identified along evolution for (2) and (3) is sensibly lower.

Settings for CORA. In all cases, we used the approach from [54], which adaptively tunes
all algorithm parameters during runtime. To get as close to the desired precision as possible, we
manually set the parameter ζz from [54, Eq. 49] to 2.5 × 10−, 6 × 10−4, and 0.017 for instances
1-3, respectively.

8



ARCH-COMP25 Nonlinear Dynamics Geretti et al.

Table 2: Results of ROBE25 in terms of computation time, number of steps and width of
s = x+ y + z.

computation time in [s]

tool (1) (2) (3)
Ariadne 110 483 612
CORA 138 224 321
DynIbex 522 4729 6287
JuliaReach 69 911 3810
KeYmaera X1 0.5 0.5 0.5
1 Single symbolic proof solves all 3 examples

number of steps

tool (1) (2) (3)
Ariadne 10000 49849 123675
CORA 16501 22494 25960
DynIbex 13949 114836 147066
JuliaReach 5895 30239 71117
KeYmaera X1 326 326 326
1 Proof steps, symbolic proof solves all 3 examples

width of x+ y + z

tool (1) (2) (3)
Ariadne 2.5e-6 9.4e-6 3.8e-6
CORA 5.8e-6 8.8e-6 8.3e-6
DynIbex 9.6e-6 7.9e-6 7.6e-6
JuliaReach 9.1e-6 3.1e-6 7.6e-11
KeYmaera X1 0 0 0
1 Exact computation without overapproximation

Settings for DynIbex. The Runge-Kutta method selected is implicit Lobatto at fourth order
(called LC3 in DynIbex) for the three setups. The absolute precision is, respectively, 1.3e−13,
5e−15 and 3e−14. The other parameters are set by default.

Settings for JuliaReach. In all cases we use the TMJets21a algorithm and nQ = 1, and we
vary the nT parameter and the adaptive absolute tolerance as follows: (1) nT = 5 and 10−13,
(2) nT = 6 and 10−9, and (3) nT = 9 and 10−12. The maximum number of integration steps
is also adjusted, reflecting the results presented in Table 2. For the results displayed in Fig. 2,
we evaluate s directly on the Taylor models produced by the integration.

Settings for KeYmaera X. The KeYmaera X proof is fully parametric, without approxi-
mation, and shows stability of all possible population sums s for any (even negative) choice of a,
b, and g, which includes the specific parametrizations (1) b = 102, g = 103, (2) b = 103, g = 105,
and (3) b = 103, g = 107.

1 Problem
2 x+y+z=s
3 −>
4 [{ x’ = −a∗x + b∗y∗z,
5 y’ = a∗x − b∗y∗z − g∗yˆ2,
6 z ’ = g∗yˆ2
7 }
8 ](x+y+z=s)
9 End.

10
11 Tactic ”Scripted proof” unfold; dIClose(1) End.
12 Tactic ”Automated proof” autoClose End.

9
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(a) Ariadne (b) CORA

(c) DynIbex (d) JuliaReach

Figure 2: Reachable set overapproximations of s = x+ y + z vs time for ROBE25 in the three
setups.

3.3 Coupled van der Pol benchmark (CVDP23)

3.3.1 Model

The original van der Pol oscillator was introduced by the Dutch physicist Balthasar van der
Pol. For this benchmark we consider two coupled oscillators, as described in [14]. The system
can be defined by the following ODE with 5 variables:



ẋ1 = y1

ẏ1 = µ(1 − x2
1)y1 + b(x2 − x1) − x1

ẋ2 = y2

ẏ2 = µ(1 − x2
2)y2 − b(x2 − x1) − x2

ḃ = 0

(1)

10
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with µ = 1. The system has a stable limit cycle that becomes increasingly sharper for higher
values of µ.

3.3.2 Analysis

We set the initial condition x1,2(0) ∈ [1.25, 1.55], y1,2(0) ∈ [2.35, 2.45] and b ∈ [1 , 3]. The unsafe
set is given by y1,2 ≥ 2.75 in a time horizon of [0, 7].

3.3.3 Evaluation

The computation time required to evolve the system and verify safety is provided. If the system
cannot be verified successfully, no value is given.

3.3.4 Results

The computation results of the tools are given in Table 3. While KeYmaera X was not able to
participate in this specific benchmark, Ariadne and Cora encountered numerical problems that
prevented completion in a reasonable time. Only JuliaReach was able to address the benchmark
properly. DynIbex used a partial worst-case analysis to obtain a result in a reasonable time.

Table 3: Results of CVDP23 in terms of computation time.
tool computation time in [s]
Ariadne N/A
CORA 526
DynIbex 990
JuliaReach 1.5
KeYmaera X1 35
1 Simplified m = 1, b = 1 and t ∈ [0, 0.1]

Settings for Ariadne. It was not possible to achieve completion is a reasonable time, due to
the very high number of splittings theoretically required to guarantee numerical convergence.

Settings for CORA. Due to the strong nonlinearity induced by the parameter b, it was
necessary to split the initial set into 13 smaller subsets. For each run, we used the polynomial-
ization algorithm in [6] with a time step size of 0.005 and a zonotope order of 100. Additionally,
we manually introduced two artificial guard sets orthogonal to the flow in order to shrink the
reachable set. Otherwise, the abstraction error and thus the computed reachable set would
explode in size.

Settings for DynIbex. Maximum zonotope order is set to 80, reachability analysis is carried
out with an (absolute and relative) error tolerance of 10−6 using an explicit RK4 method of
order 4. A formal B-series, based on recent developments [2], is computed with the help of
Bseries Julia package. A partial worst case analysis is performed by considering initial value
set at extremal value for one dimension w.r.t. others given in intervals. It leads to 5 initial
conditions that must be verified. Moreover, a bissection is performed when safety cannot be
verified (363 simulations are needed).

11
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(a) CORA

(b) DynIbex (c) JuliaReach

Figure 3: Reachable set overapproximations for CVDP23.

Settings for JuliaReach. We use the TMJets21b algorithm with nQ = 1, nT = 4, and
adaptive absolute tolerance 10−4.

Settings for KeYmaera X. The Coupled van der Pol benchmark was formalized for KeY-
maera X but not fully verified. Below, we give the formal specification in KeYmaera X format:

1 Definitions Real m, b; End.
2 ProgramVariables Real x1, x2, y1, y2; End.
3 Problem
4 1 <= b & b <= 3 /∗ b in [1,3] ∗/
5 & m = 1
6 & 1.25 <= x1 & x1 <= 1.55 & 1.25 <= x2 & x2 <= 1.55 /∗ x {1,2}(0) in [1.25,1.55] ∗/
7 & 2.35 <= y1 & y1 <= 2.45 & 2.35 <= y2 & y2 <= 2.45 /∗ y {1,2}(0) in [2.35,2.45] ∗/
8 & t = 0
9 −>

10 [{ x1’ = y1,
11 y1’ = m∗(1−x1ˆ2)∗y1 + b∗(x2−x1) − x1,
12 x2’ = y2,
13 y2’ = m∗(1−x2ˆ2)∗y2 − b∗(x2−x1) − x2,
14 t ’ = 1 & t <= 7 /∗ time horizon [0,7] ∗/
15 }

12
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16 ]!( y1>=2.75 & y2>=2.75) /∗ not in unsafe set ∗/
17 End.

We simplified the specification tom = 1, b = 1, rephrased the intervals, and certified a Taylor
model to verify safety for a time horizon [0, 0.1]. Below, we list the adjusted specification:

1 Problem
2 (t=0
3 & x1 = 0.15∗r0()+ 0∗r1()+ 0∗r2()+ 0∗r3() + 1.4 /∗ x1 in [1.25,1.55] ∗/
4 & y1 = 0∗r0()+ 0∗r1()+0.05∗r2()+ 0∗r3() + 2.4 /∗ y1 in [2.35,2.45] ∗/
5 & x2 = 0∗r0()+0.15∗r1()+ 0∗r2()+ 0∗r3() + 1.4 /∗ x2 in [1.25,1.55] ∗/
6 & y2 = 0∗r0()+ 0∗r1()+ 0∗r2()+0.05∗r3() + 2.4) /∗ y2 in [2.35,2.45] ∗/
7 & (−1 <= r0() & r0() <= 1)
8 & (−1 <= r1() & r1() <= 1)
9 & (−1 <= r2() & r2() <= 1)

10 & (−1 <= r3() & r3() <= 1)
11 −>
12 [{ x1’ = y1,
13 y1’ = (1−x1ˆ2)∗y1 − 2∗x1 + x2,
14 x2’ = y2,
15 y2’ = (1−x2ˆ2)∗y2 − 2∗x2 + x1,
16 t ’ = 1
17 & 0<=t & t<=0+0.1
18 }
19 ]!( y1>=2.75 & y2>=2.75)
20 End.

The tactic to perform Taylor model certification is an early preview and needs performance
improvements; it performs 54 · 106 proof steps to certify the simplified model with m = 1, b =
1, t ∈ [0, 0.1].

3.4 Laub-Loomis benchmark (LALO20)

3.4.1 Model

The Laub-Loomis model is presented in [38] for studying a class of enzymatic activities. The
dynamics can be defined by the following ODE with 7 variables.

ẋ1 = 1.4x3 − 0.9x1

ẋ2 = 2.5x5 − 1.5x2

ẋ3 = 0.6x7 − 0.8x2x3

ẋ4 = 2 − 1.3x3x4

ẋ5 = 0.7x1 − x4x5

ẋ6 = 0.3x1 − 3.1x6

ẋ7 = 1.8x6 − 1.5x2x7

The system is asymptotically stable, with the equilibrium point approximately [-0.87, 0.37,
-0.56, -2.75, 0.22, -0.08, -0.27].

3.4.2 Analysis

The specification for the analysis is kept the same as last year, in order to better quantify any
improvements to the participating tools.
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The initial sets are defined according to the ones used in [52]. They are boxes centered at
x1(0) = 1.2, x2(0) = 1.05, x3(0) = 1.5, x4(0) = 2.4, x5(0) = 1, x6(0) = 0.1, x7(0) = 0.45. The
range of the box in the ith dimension is defined by the interval [xi(0) − W,xi(0) + W ]. The
width W of the initial set is vital to the difficulty of the reachability analysis job. The larger
the initial set the harder the reachability analysis.

We consider W = 0.01, W = 0.05, and W = 0.1, leading to three instances called W001,
W005 and W01 respectively.

For W001 and W005 we consider the unsafe region defined by x4 ≥ 4.5, while for W01, the
unsafe set is defined by x4 ≥ 5. The time horizon for all cases is [0, 20].

3.4.3 Evaluation

The final widths of x4 along with the computation times are provided for all three cases. A
figure is provided in the (t, x4) axes, with t ∈ [0, 20], x4 ∈ [1.5, 5], where the three plots are
overlaid.

3.4.4 Results

The computation results of the tools are given in Table 4. The results are essentially identical
to last year’s.

Table 4: Results of LALO20 in terms of computation time and width of final enclosure.
computation time in [s]

tool W001 W005 W01
Ariadne 35 113 305
CORA 9.1 16 242
DynIbex 12 30 1942
JuliaReach 5.5 4.1 5.1
KeYmaera X N/A N/A 2291

1 Simplified model with t ∈ [0, 0.1]

width of x4 in final enclosure

tool W001 W005 W01
Ariadne 0.004 0.029 0.21
CORA 0.004 0.042 0.060
DynIbex 0.01 0.40 2.07
JuliaReach 0.003 0.019 0.031
KeYmaera X N/A N/A N/A

Settings for Ariadne. The maximum step size used is 0.2, with a TaylorPicardIntegrator
with a maximum error of 10−7 enforced for each step and a maximum spacial error of 10−4.
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(a) Ariadne (b) CORA

(c) DynIbex (d) JuliaReach

Figure 4: Reachable set overapproximations for LALO20 (overlayed plots for W001, W005,
W01). t ∈ [0, 20], x4 ∈ [1.5, 5].

Settings for CORA. For the smaller initial sets W001 and W005, we applied an adaptively-
tuned linearization algorithm [54], whereas the larger initial set W01 required a polynomializa-
tion algorithm, where we again used the adaptively-tuned version from [54].

Settings for DynIbex. An explicit RK4 method of order 4 is used. A formal B-series, based
on [2], is computed with the help of Bseries Julia package. For W001 the maximum zonotope
order is set to 50 and the reachability analysis is carried out with an (absolute and relative)
error tolerance of 10−6. For W005 the maximum zonotope order is set to 80 and the reachability
analysis is carried out with an (absolute and relative) error tolerance of 10−7. For W001 and
W005 no splitting of the initial conditions is performed. For W01, the initial set is split 64
times. With parallelization, the computation time is reduced for the three instances.
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Settings for JuliaReach. In all cases, we use the TMJets21b algorithm with nQ = 1, and
we vary the nT parameter and the adaptive absolute tolerance as follows. W001: nT = 7 and
5 · 10−11; W005: nT = 3 and 5 · 10−4; W01: nT = 3 and 3 · 10−4.

Settings for KeYmaera X. The Laub-Loomis benchmark was formalized for KeYmaera X
but not fully verified. Below, we give the formal specification in KeYmaera X format:

1 Definitions
2 Real W = 0.1;
3 Bool box(Real x, Real c, Real w) <−> c−w <= x & x <= c+w;
4 End.
5
6 ProgramVariables
7 Real x1, x2, x3, x4, x5, x6, x7; /∗ state space ∗/
8 Real t; /∗ time ∗/
9 End.

10
11 Problem
12 box(x1, 1.2, W) /∗ initial sets ∗/
13 & box(x2, 1.05, W)
14 & box(x3, 1.5, W)
15 & box(x4, 2.4, W)
16 & box(x5, 1, W)
17 & box(x6, 0.1, W)
18 & box(x7, 0.45, W)
19 & t=0
20 −>
21 [{ x1’ = 1.4∗x3 − 0.9∗x1,
22 x2’ = 2.5∗x5 − 1.5∗x2,
23 x3’ = 0.6∗x7 − 0.8∗x2∗x3,
24 x4’ = 2 − 1.3∗x3∗x4,
25 x5’ = 0.7∗x1 − x4∗x5,
26 x6’ = 0.3∗x1 − 3.1∗x6,
27 x7’ = 1.8∗x6 − 1.5∗x2∗x7,
28 t ’ = 1 & t<=20 /∗ time horizon [0,20] ∗/
29 }
30 ]!( x4>=5) /∗ not in unsafe set ∗/
31 End.

We focused on W = 0.1 rephrased the intervals and certified a Taylor model to verify safety
for a time horizon [0, 0.1]. Below, we list the adjusted specification:

1 Problem
2 (t=0
3 & x1 = W∗r0() + 0∗r1() + 0∗r2() + 0∗r3() + 0∗r4() + 0∗r5() + 0∗r6() + 1.2
4 & x2 = 0∗r0() + W∗r1() + 0∗r2() + 0∗r3() + 0∗r4() + 0∗r5() + 0∗r6() + 1.05
5 & x3 = 0∗r0() + 0∗r1() + W∗r2() + 0∗r3() + 0∗r4() + 0∗r5() + 0∗r6() + 1.5
6 & x4 = 0∗r0() + 0∗r1() + 0∗r2() + W∗r3() + 0∗r4() + 0∗r5() + 0∗r6() + 2.4
7 & x5 = 0∗r0() + 0∗r1() + 0∗r2() + 0∗r3() + W∗r4() + 0∗r5() + 0∗r6() + 1.0
8 & x6 = 0∗r0() + 0∗r1() + 0∗r2() + 0∗r3() + 0∗r4() + W∗r5() + 0∗r6() + 0.1
9 & x7 = 0∗r0() + 0∗r1() + 0∗r2() + 0∗r3() + 0∗r4() + 0∗r5() + W∗r6() + 0.45)

10 & (−1 <= r0() & r0() <= 1)
11 & (−1 <= r1() & r1() <= 1)
12 & (−1 <= r2() & r2() <= 1)
13 & (−1 <= r3() & r3() <= 1)
14 & (−1 <= r4() & r4() <= 1)
15 & (−1 <= r5() & r5() <= 1)
16 & (−1 <= r6() & r6() <= 1)
17 −>
18 [{ x1’ = 1.4∗x3 − 0.9∗x1,
19 x2’ = 2.5∗x5 − 1.5∗x2,
20 x3’ = 0.6∗x7 − 0.8∗x2∗x3,
21 x4’ = 2 − 1.3∗x3∗x4,
22 x5’ = 0.7∗x1 − x4∗x5,
23 x6’ = 0.3∗x1 − 3.1∗x6,
24 x7’ = 1.8∗x6 − 1.5∗x2∗x7,
25 t ’ = 1
26 & 0<=t & t<=0+0.1
27 }
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28 ]!( x4>=5)
29 End.

The tactic to perform Taylor model certification is an early preview and needs performance
improvements; it performs 23 · 106 proof steps to certify the simplified model with t ∈ [0, 0.1].

3.5 Lotka–Volterra with tangential crossings benchmark (LOVO25)
3.5.1 Model

The benchmark described below refers to the Lotka-Volterra equations, or predator-prey equa-
tions, which are well-known in the literature.

The system is defined as follows: {
ẋ = 3x− 3xy
ẏ = xy − y

(2)

which produces cyclic trajectories around the equilibrium point (1, 1) dependent on the initial
state.

We are interested to see how this nonlinear dynamics plays with a nonlinear guard, whose
boundary is: √

(x− 1)2 + (y − 1)2 = 0.161 (3)

which is a circle of radius 0.161 around the equilibrium.
By choosing an initial state I = (1.3, 1.0) the cycle has a period of approximately 3.64 time

units. The trajectory of the Lotka–Volterra system trajectory is close to tangent to the guard
circle in the top half, while it crosses the circle on the bottom half. Hence, enlarging the width
of the initial set would put the trajectory partially within the guard in the top half.

The corresponding hybrid automaton is used to model the system:
• Continuous variables: x, y;
• Locations: outside and inside;
• Dynamics: those from Eq. 2 for x, y in both locations;
• Guards: {

(x−Qx)2 + (y −Qy)2 ≤ R2 from outside to inside
(x−Qx)2 + (y −Qy)2 ≥ R2 from inside to outside

(4)

• Invariants: the complement of the corresponding guards (i.e., transitions are urgent);
• Resets: none, i.e., the identity for both transitions.

3.5.2 Analysis

We want to start the system from I = (1.3 ± ϵ, 1.0), with ϵ = 0.012, and evolve it for T = 3.64
time units. Since the original system was close to tangency, by enlarging the initial set we
expect to produce different sequences of discrete events due to the distinction between crossing
and not crossing, and possibly by distinguishing the crossing sets based on the different crossing
times. We must remark that, for reachability analysis purposes, it is important to carry the
trace of discrete events along with the current evolution time.

The following four properties must be verified:
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Table 5: Results of LOVO25 in terms of computation time and area.
tool computation time in [s] area
Ariadne 96 2.5e-4
CORA 8.8 8.9e-3
DynIbex 23 6.4e-4
JuliaReach 1.2 9e-5
KeYmaera X (5.8)1 0
1 Duration of proving invariance (not checking crossing)

• The area x× y of the box hull enclosing all the final sets must be lower than 10−2;
• At least one final set must have crossed two guards by entering and exiting the reference

circle once;
• At least one final set must have crossed four guards by entering and exiting the reference

circle twice;
• While a larger even number of crossings is allowed due to Zeno behavior during tangent

crossing, no odd numbers are possible.

3.5.3 Evaluation

In terms of metrics, it is required to supply the following:
1. The execution time for computing the reachable set and checking the properties;
2. The area x× y of the box hull enclosing all the final sets.

In addition, a figure showing the reachable set along with the circular guard shall be provided.
The axes are [0.6, 1.4] × [0.6, 1.4].

3.5.4 Results

All tools were able to handle the benchmark with results equivalent to last year. Table 5 gives
the timing/quality results, while Fig. 5 shows the graphical output.

Settings for Ariadne. A GradedTaylorSeriesIntegrator is used with a maximum spacial
error of 10−4 and maximum step error of 10−7. The maximum step size is 0.2.

Settings for CORA. We use the approach in [36] to compute the intersections with the non-
linear guard set. For continuous reachability we apply the conservative linearization approach
[12] with time step size of 0.02 and a zonotope order of 20 for all modes.

Settings for DynIbex. The library DynIbex does not support hybrid systems natively.
However, based on constraint programming, event detection can be implemented and hybrid
systems can be simulated. Reachability analysis is carried out with an error tolerance of 10−14

using an explicit Runge-Kutta method of order 4 (RK4 method). No splitting of the initial
state has been performed.
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(a) Ariadne (b) CORA

(c) DynIbex (d) JuliaReach

Figure 5: Reachable set overapproximation for LOVO25, with x, y ∈ [0.6, 1.4], where the circular
guard is shown.

Settings for JuliaReach. We use the TMJets21b algorithm with nT = 3, nQ = 1, and
adaptive absolute tolerance 10−4. We also split the initial set into 5 intervals in each dimension.
The crossings to the nonlinear guard are handled by checking the reach sets that do not lie
strictly outside the circle.

Settings for KeYmaera X. The KeYmaera X proof focuses on infinite-horizon population
stability for any positive starting choice of populations x > 0 and y > 0, which includes the
specific starting populations x = 1.3 ± ϵ and y = 1. The population orbit is stable around
( α

β ,
γ
δ ) at population e−δx−βyxγyα for α = β = 3 and δ = γ = 1.

1 Definitions Real K(Real x, Real y) = exp(−d∗x−b∗y) ∗ xˆg ∗ yˆa; End.
2 Problem
3 a=3 & b=3 & d=1 & g=1 & x>0 & y>0 & K 0 = K(x,y)
4 −>
5 [{ x’ = a∗x − b∗x∗y,
6 y’ = d∗x∗y − g∗y
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7 }
8 ]K(x,y) = K 0
9 End.

10
11 Tactic ”Scripted proof”
12 useSolver(”Mathematica”);
13 unfold;
14 dIRule(1); <(
15 ”dI Init”: equalCommute(1); id,
16 ”dI Step”:
17 chaseAt(1);
18 QE using ”(exp(−1∗x−3∗y)∗(−1∗(3∗x−3∗x∗y)−3∗(1∗x∗y−1∗y))∗xˆ1+exp(−1∗x−3∗y)∗(1∗xˆ(1−1)∗(3∗x

↪→ −3∗x∗y)))∗yˆ3+exp(−1∗x−3∗y)∗xˆ1∗(3∗yˆ(3−1)∗(1∗x∗y−1∗y))=0”
19 )
20 End.
21 Tactic ”Automated proof” autoClose End.

The formalization in the repeatability package also includes a symbolic characterization
of the existence of crossing in and out of the nonlinear guard: this purely real arithmetic
proof obligation is not yet tractable by the arithmetic backend verification procedures used in
KeYmaera X. In future editions, we plan to additionally characterize the number of transitions
symbolically.

3.6 Space rendezvous benchmark (SPRE22)

3.6.1 Model

Space rendezvous is a perfect use case for formal verification of hybrid systems with nonlinear
dynamics since mission failure can cost lives and is extremely expensive. This benchmark
is taken from [27]. A version of this benchmark with linearized dynamics is verified in the
ARCH-COMP category Continuous and Hybrid Systems with Linear Continuous Dynamics.
The nonlinear dynamic equations describe the two-dimensional, planar motion of the spacecraft
on an orbital plane towards a space station:



ẋ = vx

ẏ = vy

v̇x = n2x+ 2nvy + µ

r2 − µ

r3
c

(r + x) + ux

mc

v̇y = n2y − 2nvx − µ

r3
c

y + uy

mc

The model consists of position (relative to the target) x, y [m], time t [min], as well as hor-
izontal and vertical velocity vx, vy [m / min]. Nonlinearity comes from the variable term
rc =

√
(r + x)2 + y2. The parameters are µ = 3.986 × 1014 × 602 [m3 / min2], r = 42164 × 103

[m], mc = 500 [kg] and n =
√

µ
r3 .

The hybrid nature of this benchmark originates from a switched controller. In particular,
the modes are approaching (x ∈ [−1000,−100] [m]), rendezvous attempt (x ≥ −100 [m]), and
aborting. A transition to mode aborting occurs nondeterministically at t ∈ [120, 150] [min].
The linear feedback controllers for the different modes are defined as ( ux

uy ) = K1x for mode
approaching, and ( ux

uy ) = K2x for mode rendezvous attempt, where x =
(
x y vx vy

)T is
the vector of system states. The feedback matrices Ki were determined with an LQR-approach
applied to the linearized system dynamics, which resulted in the following numerical values:
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K1 =
(

−28.8287 0.1005 −1449.9754 0.0046
−0.087 −33.2562 0.00462 −1451.5013

)

K2 =
(

−288.0288 0.1312 −9614.9898 0
−0.1312 −288 0 −9614.9883

)
In the mode aborting, the system is uncontrolled ( ux

uy ) = ( 0
0 ).

3.6.2 Analysis

The spacecraft starts from the initial set x ∈ [−925,−875] [m], y ∈ [−425,−375] [m], vx ∈ [0, 5]
[m/min] and vy ∈ [0, 5] [m/min]. For the considered time horizon of t ∈ [0, 200] [min], the
following specifications have to be satisfied:

• Line-of-sight: In mode rendezvous attempt, the spacecraft has to stay
inside line-of-sight cone L = {( x

y ) | (x ≥ −100) ∧ (y ≥ x tan(20◦)) ∧ (−y ≥ x tan(20◦))}.
• Collision avoidance: In mode aborting, the spacecraft has to avoid a collision with the

target, which is modeled as a box B with 2m edge length and the center placed at the
origin.

• Velocity constraint: In mode rendezvous attempt, the absolute velocity has to stay
below 3.3 [m/min]:

√
v2

x + v2
y ≤ 3.3 [m/min].

Remark on velocity constraint In the original benchmark [27], the constraint on the
velocity was set to 0.05 m/s, but it can be shown (by a counterexample) that this constraint
cannot be satisfied. We therefore use the relaxed constraint 0.055 [m/s] = 3.3 [m/min].

3.6.3 Evaluation

The computation time for evolution and verification is provided. A figure is shown in the (x, y)
axes, with x ∈ [−1000, 200] and y ∈ [−450, 0].

3.6.4 Results

The results of the reachability computation for the space rendezvous model are given in Figure 6
and Table 6, with the tool settings below. The introduction of a permissive guard prevented
completion for Ariadne: too many trajectories were generated and the absence of a recombina-
tion strategy proved an issue. Therefore, this benchmark requires proper support of crossings in
the presence of large sets, even if the crossing region is very simple from a geometrical viewpoint.
KeYmaera X formalized but did not prove the problem yet.

Settings for Ariadne. Ariadne was not able to complete evolution, due to the extremely
large number of trajectories produced from the nondeterministic guard: this is caused by the
lack of a recombination strategy. The maximum step size used was 1.0, essentially meaning that
we allowed the step size to vary widely along evolution: this choice turned out to be preferable
in terms of execution time. The maximum temporal order was 4 and the maximum spacial
error enforced for each step equal is 10−3. A splitting strategy for the initial set was used; the
strategy compare the radius of the set with a reference value of 12.0, in order to split the first
two dimensions once and yield a total of 4 initial subsets.
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Table 6: Results of SPRE22 in terms of computation time.
tool computation time in [s]
Ariadne −
CORA 35
DynIbex 147
JuliaReach 110
KeYmaera X N/A

−1,000 −500 0

−400

−200

0

sx

s y

(a) CORA (b) DynIbex

(c) JuliaReach

Figure 6: Reachable set of the spacecraft position in the x-y-plane for SPRE22.

Settings for CORA. CORA was run with a time step size of ∆t = 0.2 [min] for the modes
approaching and aborting, and with a time step size of ∆t = 0.05 [min] for mode rendezvous at-
tempt. The intersections with the guard sets are calculated with constrained zonotopes [49], and
the intersection is then enclosed with a zonotope bundle [11]. We applied principal component
analysis to find suitable orthogonal directions for the enclosure.
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Settings for DynIbex. The library DynIbex does not support hybrid systems natively.
However, based on constraint programming, event detection can be implemented and hybrid
systems can be simulated. Maximum zonotope order is set to 10, reachability analysis is carried
out with an error tolerance of 10−6 using an explicit Runge-Kutta method of order 3 (Kutta’s
method). No splitting of the initial state has been performed.

Settings for JuliaReach. The transition to the aborting mode is handled by clustering and
Cartesian decomposition [22] with zonotope enclosures in low dimensions, (x, y) and (vx, vy).
The continuous-time algorithms used in the modes (approaching, rendezvous attempt, and abort-
ing) are TMJets21a (first two modes) and TMJets21b (third mode) with nT = 3, 5, 7 and adap-
tive absolute tolerance 4 · 10−4, 5 · 10−6, 10−10, respectively, and nQ = 1 in all cases.

Settings for KeYmaera X. The example was formalized for KeYmaera X but not yet
proved. The full model is included in the repeatability evaluation package.

3.7 Transient Stability Analysis of Power Systems (TSPS25)

Power systems are a vital part of civil infrastructure, making them a perfect use case for
formal verification. We consider the transient stability analysis benchmark introduced in [7].
The benchmark investigates whether a power system is able to reach an acceptable operating
condition in which the generators are synchronized after a contingency.

3.7.1 Model

We consider the model of the IEEE 14 bus power system, which is a popular example in power
system analysis [45]. We obtain a nonlinear differential algebraic system of the form

ẋ = f(x(t), y(t), u(t))
0 = g(x(t), y(t), u(t))
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representing the power system using the automatic benchmark generation approach from [13].
We provide the differential and algebraic equations as MATLAB scripts for ease of use. The
differential dynamics f(x(t), y(t), u(t)) are given as



ẋ1 = x6 − 120π,
ẋ2 = x7 − 120π,
ẋ3 = x8 − 120π,
ẋ4 = x9 − 120π,
ẋ5 = x10 − 120π,

ẋ6 = 15x11π − 3π(x6 − 120π)
5 − 159y1π sin x1

2 ,

ẋ7 = 15x12π − 3π(x7 − 120π)
5 − 627y2π sin(x2 − y15)

8 ,

ẋ8 = 15x13π − 3π(x8 − 120π)
5 − 303y3π sin(x3 − y16)

4 ,

ẋ9 = 15x14π − 3π(x9 − 120π)
5 − 321y4π sin(x4 − y17)

4 ,

ẋ10 = 15x15π − 3π(x10 − 120π)
5 − 327y5π sin(x5 − y18)

4 ,

ẋ11 = u1 − p1x6 − x11 + p2,

ẋ12 = u2 − p1x7 − x12 + p2,

ẋ13 = u3 − p1x8 − x13 + p2,

ẋ14 = u4 − p1x9 − x14 + p2,

ẋ15 = u5 − p1x10 − x15 + p2.
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with p1 = 0.0531 and p2 = 20, and the algebraic equations are



g1 = 17.8 cos(y15 + 1.89) − 1.0u6 − 17.8 sin(y15 + 1.89) + 4.62y7 cos(y20 + 1.81)
−4.62y7 sin(y20 + 1.81) − 5.3y1 cos(x1) − 5.3y1 sin(x1) + 34.2

g2 = 17.8 cos(y15 − 1.89) − 1.0u7 + 5.19 cos(y16 − y15 + 1.8) − 5.22y2 sin(x2 − y15)
+5.71y7 cos(y20 − y15 + 1.89) + 5.63y6 cos(y19 − y15 + 1.89) + 10.6

g3 = 5.19 cos(y15 − y16 + 1.8) − 1.0u8 − 5.05y3 sin(x3 − y16)
+5.5y6 cos(y19 − y16 + 1.94) + 4.13

g4 = 4.85y11 cos(y24 − y17 + 2.02) − 5.35y4 sin(x4 − y17) − 1.0u9
+3.77y12 cos(y25 − y17 + 2.02) + 7.32y13 cos(y26 − y17 + 2.04)
+4.56y7 cos(y20 − y17 + 1.57) + 7.65

g5 = 6.19y8 cos(y21 − y18 + 1.57) − 5.45y5 sin(x5 − y18) − 1.0u10
g6 = 5.63y6 cos(y15 − y19 + 1.89) − 1.0u11 + 5.5y6 cos(y16 − y19 + 1.94) + 10.5y2

6
+4.89y6y8 cos(y21 − y19 + 1.57) + 1.86y6y9 cos(y22 − y19 + 1.57)
+22.6y6y7 cos(y20 − y19 + 1.88) + 0.478

g7 = 4.62y7 cos(y20 − 1.81) − 1.0u12 + 4.56y7 cos(y17 − y20 + 1.57)
+5.71y7 cos(y15 − y20 + 1.89) + 9.57y2

7 + 22.6y6y7 cos(y19 − y20 + 1.88) + 0.076
g8 = 6.19y8 cos(y18 − y21 + 1.57) − 1.0u13 + 4.89y6y8 cos(y19 − y21 + 1.57)

+9.09y8y9 cos(y22 − y21 + 1.57)
g9 = 5.33y2

9 − 1.0u14 + 1.86y6y9 cos(y19 − y22 + 1.57) + 9.09y8y9 cos(y21 − y22 + 1.57)
+11.1y9y10 cos(y23 − y22 + 1.93) + 3.35y9y14 cos(y27 − y22 + 2.01) + 0.295

g10 = 5.78y2
10 − 1.0u15 + 11.1y9y10 cos(y22 − y23 + 1.93)

+4.79y10y11 cos(y24 − y23 + 1.97) + 0.09
g11 = 4.85y11 cos(y17 − y24 + 2.02) − 1.0u16 + 3.84y2

11 + 4.79y10y11 cos(y23 − y24 + 1.97)
+0.035

g12 = 3.77y12 cos(y17 − y25 + 2.02) − 1.0u17 + 4.01y2
12 + 3.36y12y13 cos(y26 − y25 + 2.41)

+0.061
g13 = 7.32y13 cos(y17 − y26 + 2.04) − 1.0u18 + 6.72y2

13 + 2.58y13y14 cos(y27 − y26 + 2.03)
+3.36y12y13 cos(y25 − y26 + 2.41) + 0.135

g14 = 2.56y2
14 − 1.0u19 + 3.35y9y14 cos(y22 − y27 + 2.01)

+2.58y13y14 cos(y26 − y27 + 2.03) + 0.149
g15 = 17.8 sin(y15 − 1.89) − 5.19 sin(y16 − y15 + 1.8) − 5.22y2 cos(x2 − y15)

−5.71y7 sin(y20 − y15 + 1.89) − 5.63y6 sin(y19 − y15 + 1.89) + 38.6
g16 = 15.3 − 5.05y3 cos(x3 − y16) − 5.5y6 sin(y19 − y16 + 1.94) − 5.19 sin(y15 − y16 + 1.8)
g17 = 25.7 − 4.85y11 sin(y24 − y17 + 2.02) − 3.77y12 sin(y25 − y17 + 2.02)

−7.32y13 sin(y26 − y17 + 2.04) − 4.56y7 sin(y20 − y17 + 1.57) − 5.35y4 cos(x4 − y17)
g18 = 12.7 − 6.19y8 sin(y21 − y18 + 1.57) − 5.45y5 cos(x5 − y18)
g19 = 38.7y2

6 − 5.5y6 sin(y16 − y19 + 1.94) − 5.63y6 sin(y15 − y19 + 1.89)
−4.89y6y8 sin(y21 − y19 + 1.57) − 1.86y6y9 sin(y22 − y19 + 1.57)
−22.6y6y7 sin(y20 − y19 + 1.88) − 0.039

g20 = 4.62y7 sin(y20 − 1.81) − 4.56y7 sin(y17 − y20 + 1.57) − 5.71y7 sin(y15 − y20 + 1.89)
+35.5y2

7 − 22.6y6y7 sin(y19 − y20 + 1.88) + 0.016
g21 = 19.5y2

8 − 6.19y8 sin(y18 − y21 + 1.57) − 4.89y6y8 sin(y19 − y21 + 1.57)
−9.09y8y9 sin(y22 − y21 + 1.57)
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

g22 = 24.1y2
9 − 1.86y6y9 sin(y19 − y22 + 1.57) − 9.09y8y9 sin(y21 − y22 + 1.57)

−11.1y9y10 sin(y23 − y22 + 1.93) − 3.35y9y14 sin(y27 − y22 + 2.01) + 0.166
g23 = 14.8y2

10 − 11.1y9y10 sin(y22 − y23 + 1.93) − 4.79y10y11 sin(y24 − y23 + 1.97) + 0.058
g24 = 8.5y2

11 − 4.85y11 sin(y17 − y24 + 2.02) − 4.79y10y11 sin(y23 − y24 + 1.97) + 0.018
g25 = 5.43y2

12 − 3.77y12 sin(y17 − y25 + 2.02) − 3.36y12y13 sin(y26 − y25 + 2.41) + 0.016
g26 = 10.7y2

13 − 7.32y13 sin(y17 − y26 + 2.04) − 3.36y12y13 sin(y25 − y26 + 2.41)
−2.58y13y14 sin(y27 − y26 + 2.03) + 0.058

g27 = 5.34y2
14 − 3.35y9y14 sin(y22 − y27 + 2.01) − 2.58y13y14 sin(y26 − y27 + 2.03) + 0.05.

3.7.2 Analysis

We consider a fault occurring at to, which consists of a power dropout in bus 1. This is
modeled by a change in system dynamics and algebraic equations:

ẋ6 = 15x11π − 3π(x6−120π)
5 ,

g1 = 16.8y1cos(y15 + 1.89) − 1.0u6 − 16.8y1sin(y15 + 1.89) + 25.5y2
1

+4.36y1y7cos(y20 + 1.81) − 4.36y1y7sin(y20 + 1.81)
g2 = 5.19cos(y16 − 1.0y15 + 1.8) − 1.0u7 − 5.22y2sin(x2 − 1.0y15)

+16.8y1cos(y15 − 1.89) + 5.71y7cos(y20 − 1.0y15 + 1.89)
+5.63y6cos(y19 − 1.0y15 + 1.89) + 10.6

g7 = 4.56y7cos(y17 − 1.0y20 + 1.57) − 1.0u12 + 5.71y7cos(y15 − 1.0y20 + 1.89) + 9.57y2
7

+4.36y1y7cos(y20 − 1.81) + 22.6y6y7cos(y19 − 1.0y20 + 1.88) + 0.076
g15 = 16.8y1sin(y15 − 1.89) − 5.22y2cos(x2 − 1.0y15) − 5.19sin(y16 − 1.0y15 + 1.8)

−5.71y7sin(y20 − 1.0y15 + 1.89) − 5.63y6sin(y19 − 1.0y15 + 1.89) + 38.6
g20 = 35.5y2

7 − 5.71y7sin(y15 − 1.0y20 + 1.89) − 4.56y7sin(y17 − 1.0y20 + 1.57)
+4.36y1y7sin(y20 − 1.81) − 22.6y6y7sin(y19 − 1.0y20 + 1.88) + 0.016

where all other states evolve by their previously mentioned dynamics. At time tc the fault is
cleared, which means the system behaves as given by the original dynamics. The verification
goal is to check if the reachable set R(t) reverts back to the initial state after the fault is cleared,
meaning

∃t > tc : R(t) ⊆ R(0).

The parameters for analysis are to = 0.1, tc = 0.13, and time horizon tf = 5. With [−1, 1]p
denoting the p-dimensional unit box, the initial set is given as x∗ + 0.01[−1, 1]5 × 0.1[−1, 1]5 ×
0.001[−1, 1]5 with

x∗ = [0.33,−0.02,−0.22,−0.25,−0.23, 377.0, 377.0, 377.0, 377.0, 377.0, 2.0, 0.4, 0.0, 0.0, 0.0]T

Furthermore, the piece-wise constant inputs are given as u(t) = [2, 0.4, 0, . . . , 0]T for t ∈ [0, to]
and t ∈ [tc, tf ], and u(t) = [0, 0.4, 0, . . . , 0]T for t ∈ [to, tc].

To simplify the analysis, we recommend to not treat the system as a hybrid system but
to carry out three sequential analysis procedures for the system under normal operation, fault
occurrence, and operation after fault.

3.8 Evaluation
Successful verification of the safety specification is reported. Furthermore, a figure is provided
in the (x1, x6) axes, with x1 ∈ [0.15, 0.55], and x6 ∈ [374, 380].
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Table 7: Results of TSPS25 in terms of computation time.
tool computation time in [s]
Ariadne N/A
CORA 311
DynIbex N/A
JuliaReach N/A
KeYmaera X N/A

3.8.1 Results

Only CORA is currently capable of addressing this benchmark. Visual results are shown in
Fig. 7.

(a) CORA

Figure 7: Reachable set of the power system state in the x1-x6-plane for TSPS25.

Settings for Ariadne. We currently can only express differential-algebraic systems where
each algebraic variable is assigned an expression in all other variables, therefore this benchmark
can not be analyzed yet.

Settings for CORA. We employ an application-knowledge inspired system decomposition
into two subsystems as was done in [7]. As performing the complete analysis on the subsystems
would lead to a large approximation error due to the loss of information about the subsystems’
coupling, we perform the general reachability analysis on the original system and use the decou-
pled systems solely to evaluate the Lagrange remainder for the linearization error [7]. CORA
was run with a time step size of ∆t = 0.005 for the normal operation, and with a time step
size of ∆t = 0.001 for operation under fault. For the normal operation after the fault, at time
t = 2, we employ an enlarged time step of ∆t = 0.02. At all times, we allowed a maximum
zonotope order of 400.
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Settings for DynIbex. DynIbex is capable of addressing this benchmark. However, com-
putation times are very long because of the high dimensionality, and we did not manage to
simulate during the whole time horizon with enough precision to obtain the correct result.

Settings for JuliaReach. JuliaReach currently has no approach to analyze differential-
algebraic systems.

Settings for KeYmaera X. We could not address the benchmark at this time and will try
next year; the high dimensionality of the system makes it challenging for the arithmetic solvers
used by KeYmaera X, and manual arithmetic proofs are likely needed.

4 Conclusions and Outlook
This year, the competition confirmed the five participants from 2024.

Regarding benchmark evaluation, we introduced a new entry (TSPS25), that however for
now could be addressed only by CORA. We additionally enhanced LOVO and ROBE to provide
a clear verification objective in all cases.

The CVDP23 benchmark still proved a bit too difficult for Ariadne and was addressed by
KeYmaera X in a simplified variant.

The TRAF22 benchmark was still not supported by Ariadne.
We like to mention that, triggered by the participation in this competition, individual tools

made progress:
• CORA has started developing reachability algorithms incorporating splitting in the state

space, as the CVDP23 benchmark is still too difficult for a single run. Preliminary tests on
simpler dynamics have shown to be quite successful in automatically verifying reach-avoid
specifications. Furthermore, we have noticed that one can exploit monotonicity in the
range bounding of the derivatives in order to obtain tighter enclosures of the reachable
set. This will be integrated in general in upcoming CORA releases.

• KeYmaera X added a tactic to certify Taylor models from the axioms of differential dy-
namic logic. This tactic was applied to the CVDP23 and LALO25 benchmarks, but is in
need of performance improvements: it performs vastly more proof steps than other tactics
for differential equation analysis (e.g., 54 · 106 proof steps to certify a Taylor model in
CVDP23 vs 326 proof steps to analyze a differential invariant in ROBE25) and generates
non-trivial proof obligations for the external arithmetic solvers used in KeYmaera X.

Summarizing, we believe that a benchmark suite with representative problems is of the
utmost importance, in order to stimulate meaningful progress of all the participating tools. At
the same time, we care about allowing all tools to solve all benchmarks and we will try to
modify the most critical ones in order to achieve that. Consequently, for the next year we aim
at refining the existing suite to advance in these directions, also possibly increasing the number
of benchmarks.
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